3.3.27 \(\int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{3/2}} \, dx\) [227]

Optimal. Leaf size=156 \[ -\frac {154 a^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)}}-\frac {154 a^4 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 d e^3}+\frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}+\frac {44 a^8 (e \cos (c+d x))^{7/2}}{3 d e^5 \left (a^4-a^4 \sin (c+d x)\right )} \]

[Out]

-154/15*a^4*(e*cos(d*x+c))^(3/2)*sin(d*x+c)/d/e^3+4*a^7*(e*cos(d*x+c))^(11/2)/d/e^7/(a-a*sin(d*x+c))^3+44/3*a^
8*(e*cos(d*x+c))^(7/2)/d/e^5/(a^4-a^4*sin(d*x+c))-154/5*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El
lipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x+c))^(1/2)/d/e^2/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2749, 2759, 2715, 2721, 2719} \begin {gather*} \frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}-\frac {154 a^4 \sin (c+d x) (e \cos (c+d x))^{3/2}}{15 d e^3}-\frac {154 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{5 d e^2 \sqrt {\cos (c+d x)}}+\frac {44 a^8 (e \cos (c+d x))^{7/2}}{3 d e^5 \left (a^4-a^4 \sin (c+d x)\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[c + d*x])^4/(e*Cos[c + d*x])^(3/2),x]

[Out]

(-154*a^4*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*e^2*Sqrt[Cos[c + d*x]]) - (154*a^4*(e*Cos[c + d
*x])^(3/2)*Sin[c + d*x])/(15*d*e^3) + (4*a^7*(e*Cos[c + d*x])^(11/2))/(d*e^7*(a - a*Sin[c + d*x])^3) + (44*a^8
*(e*Cos[c + d*x])^(7/2))/(3*d*e^5*(a^4 - a^4*Sin[c + d*x]))

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2749

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(a/g)^
(2*m), Int[(g*Cos[e + f*x])^(2*m + p)/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 -
 b^2, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]

Rule 2759

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[2*g*(g
*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(2*m +
p + 1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rubi steps

\begin {align*} \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{3/2}} \, dx &=\frac {a^8 \int \frac {(e \cos (c+d x))^{13/2}}{(a-a \sin (c+d x))^4} \, dx}{e^8}\\ &=\frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}-\frac {\left (11 a^6\right ) \int \frac {(e \cos (c+d x))^{9/2}}{(a-a \sin (c+d x))^2} \, dx}{e^6}\\ &=\frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}+\frac {44 a^6 (e \cos (c+d x))^{7/2}}{3 d e^5 \left (a^2-a^2 \sin (c+d x)\right )}-\frac {\left (77 a^4\right ) \int (e \cos (c+d x))^{5/2} \, dx}{3 e^4}\\ &=-\frac {154 a^4 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 d e^3}+\frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}+\frac {44 a^6 (e \cos (c+d x))^{7/2}}{3 d e^5 \left (a^2-a^2 \sin (c+d x)\right )}-\frac {\left (77 a^4\right ) \int \sqrt {e \cos (c+d x)} \, dx}{5 e^2}\\ &=-\frac {154 a^4 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 d e^3}+\frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}+\frac {44 a^6 (e \cos (c+d x))^{7/2}}{3 d e^5 \left (a^2-a^2 \sin (c+d x)\right )}-\frac {\left (77 a^4 \sqrt {e \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 e^2 \sqrt {\cos (c+d x)}}\\ &=-\frac {154 a^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)}}-\frac {154 a^4 (e \cos (c+d x))^{3/2} \sin (c+d x)}{15 d e^3}+\frac {4 a^7 (e \cos (c+d x))^{11/2}}{d e^7 (a-a \sin (c+d x))^3}+\frac {44 a^6 (e \cos (c+d x))^{7/2}}{3 d e^5 \left (a^2-a^2 \sin (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.07, size = 64, normalized size = 0.41 \begin {gather*} \frac {16\ 2^{3/4} a^4 \, _2F_1\left (-\frac {11}{4},-\frac {1}{4};\frac {3}{4};\frac {1}{2} (1-\sin (c+d x))\right ) \sqrt [4]{1+\sin (c+d x)}}{d e \sqrt {e \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[c + d*x])^4/(e*Cos[c + d*x])^(3/2),x]

[Out]

(16*2^(3/4)*a^4*Hypergeometric2F1[-11/4, -1/4, 3/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^(1/4))/(d*e*Sqrt[
e*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 3.06, size = 190, normalized size = 1.22

method result size
default \(-\frac {2 \left (-24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-80 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+231 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-246 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+80 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-140 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{4}}{15 e \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}\) \(190\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/e/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/sin(1/2*d*x+1/2*c)*(-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+24
*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-80*sin(1/2*d*x+1/2*c)^5+231*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-246*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+80*sin(
1/2*d*x+1/2*c)^3-140*sin(1/2*d*x+1/2*c))*a^4/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

e^(-3/2)*integrate((a*sin(d*x + c) + a)^4/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 241, normalized size = 1.54 \begin {gather*} \frac {231 \, {\left (-i \, \sqrt {2} a^{4} \cos \left (d x + c\right ) + i \, \sqrt {2} a^{4} \sin \left (d x + c\right ) - i \, \sqrt {2} a^{4}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 231 \, {\left (i \, \sqrt {2} a^{4} \cos \left (d x + c\right ) - i \, \sqrt {2} a^{4} \sin \left (d x + c\right ) + i \, \sqrt {2} a^{4}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, a^{4} \cos \left (d x + c\right )^{3} + 20 \, a^{4} \cos \left (d x + c\right )^{2} + 137 \, a^{4} \cos \left (d x + c\right ) + 120 \, a^{4} + {\left (3 \, a^{4} \cos \left (d x + c\right )^{2} - 17 \, a^{4} \cos \left (d x + c\right ) + 120 \, a^{4}\right )} \sin \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{15 \, {\left (d \cos \left (d x + c\right ) e^{\frac {3}{2}} - d e^{\frac {3}{2}} \sin \left (d x + c\right ) + d e^{\frac {3}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/15*(231*(-I*sqrt(2)*a^4*cos(d*x + c) + I*sqrt(2)*a^4*sin(d*x + c) - I*sqrt(2)*a^4)*weierstrassZeta(-4, 0, we
ierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 231*(I*sqrt(2)*a^4*cos(d*x + c) - I*sqrt(2)*a^4*sin
(d*x + c) + I*sqrt(2)*a^4)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) +
 2*(3*a^4*cos(d*x + c)^3 + 20*a^4*cos(d*x + c)^2 + 137*a^4*cos(d*x + c) + 120*a^4 + (3*a^4*cos(d*x + c)^2 - 17
*a^4*cos(d*x + c) + 120*a^4)*sin(d*x + c))*sqrt(cos(d*x + c)))/(d*cos(d*x + c)*e^(3/2) - d*e^(3/2)*sin(d*x + c
) + d*e^(3/2))

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**4/(e*cos(d*x+c))**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4850 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)^4*e^(-3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^4/(e*cos(c + d*x))^(3/2),x)

[Out]

int((a + a*sin(c + d*x))^4/(e*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________